
Testing Matters
And so does your sleep.

Rahul C

Senior Developer

Rahul C

Senior Developer

I write about tech, politics and food.
blog.bitsapien.dev

Why am I talking about testing?

Why am I talking about testing?

Files > 500 LOC

Why am I talking about testing?

Files > 500 LOC

Tests that mocked so much, they were just testing mocks

Why am I talking about testing?

Files > 500 LOC

Tests that mocked so much, they were just testing mocks

Can’t make no correlation between a business feature and a test

What should you expect?

What should you expect?

Ways to make your tests suite more readable

What should you expect?

Ways to make your tests suite more readable

Spend less time ripping your head when writing or reading tests

What should you expect?

Ways to make your tests suite more readable

Spend less time ripping your head when writing or reading tests

Spend less time refactoring

What should you expect?

Ways to make your tests suite more readable

Spend less time ripping your head when writing or reading tests

Spend less time refactoring

Test with more confidence

Sleep Well At Night

Ways to make your tests suite more readable

Spend less time ripping your head when writing or reading tests

Spend less time refactoring

Test with more confidence

Software Engineers

Why do we do software
development?

I ❤ code.

But…

Business Impact

Always fast. Always confident.

All Hail Capitalism 💰

There is always a cost.

Optimise on that cost.

Code is the cost.

Code is the cost.

Writing code costs.

Code is the cost.

Writing code costs. 

There is cost to waiting for code to be written - agility.

Code is the cost.

Writing code costs. 

There is cost to waiting for code to be written - agility. 

Changing code costs.

Code is the cost.

Writing code costs. 

There is cost to waiting for code to be written - agility. 

Changing code costs.

Understanding code costs.

We read code more than we write.

Clean Code

Reading Code.

Reading Code.
Purpose? Boundaries? Responsibilities?

Documentation

 Documentation

Let’s care about our tests more.

Test code is also code.

Let’s look at these problems.

Large Test Suites

Large Test Suites

A Vue Frontend Application
A Java Backend application

Business Logic

Tests

Refactoring 🤯

Refactoring 🤯

Refactoring is changing implementation details without breaking our tests / interfaces.

Refactoring 🤯

What if it breaks existing functionality !

Refactoring 🤯

Don’t touch that piece of code atleast

Refactoring 🤯

The fear is real.

Refactoring 🤯

And it’s not because you don’t have tests.

Refactoring 🤯

Why?

The Ghost Tests

Copy Pasta

Poor test suites will lead to poorer test suites.

Duct Tape Programmer

Cucumber anyone ? 🥒

I ❤ writing tests

Ideas

The Test Pyramid : What’s missing?

The Test Pyramid : What’s missing?

Confidence

The contract with the world is important.

The Test Pyramid : What’s missing?

Confidence

Behaviour is what the business cares about.

If E2E tests gave you faster feedback?

If E2E tests gave you faster feedback?

If E2E tests gave you faster feedback?

Transformations and Side Effects

Transformations and Side Effects

External HTTP Calls

Databases

File System

…

Any kind of I/O 
….

 

Basically anything that runs beyond your isolated system

System Under Test

Hexagonal Architecture

DomainPorts Adapters

Hexagonal Architecture

Domain
Ports

AdaptersHTTP

Queue

DB

GRPC

Hexagonal Architecture

Domain
Ports

AdaptersHTTP

Queue

DB

GRPC

Unit Tests

Hexagonal Architecture

Domain
Ports

AdaptersHTTP

Queue

DB

GRPC

Unit Tests

Hexagonal Architecture

Domain
Ports

AdaptersHTTP

Queue

DB

GRPC

Unit Tests

Back to Unit Tests

Domain
Ports

AdaptersHTTP

Queue

DB

GRPC

Unit Tests

Back to Unit Tests

Teams’ product owner:

Can we make the user login using OTPs on phones?

Back to Unit Tests

Teams’ product owner:

Can we make the user login using OTPs on phones?

Given a phone number of Alice who is a registered user

When Alice wants to login using OTP on their phone

Then give them an OTP

Given a phone number of Bob who is not a registered user

When Bob wants to login using OTP on their phone

Then do not send them an OTP

Given the shared OTP

When Alice shares it with our system

Then our systems must authenticate them in.

Back to Unit Tests

OTP requesting
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

DB

Approach

Back to Unit Tests

OTP requesting
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

Back to Unit Tests

OTP requesting
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

Back to Unit Tests

OTP requesting
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

Back to Unit Tests

OTP requesting
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

Mocking

Mocking : Bad Idea

It is slow and stateful.

Mocking : Bad Idea

It is slow and stateful.

They end up making you test implementation thus create hell when refactoring.

Mocking : Bad Idea

It is slow and stateful.

They end up making you test implementation thus create hell when refactoring.

If you are having to use a lot of mocks, that is an alarm of growing complexity.

Mocking makes us look away from the problem

Mocking : Bad Idea

It is slow and stateful.

They end up making you test implementation thus create hell when refactoring.

If you are having to use a lot of mocks, that is an alarm of growing coupling.

Mocking makes us look away from the problem

Mocks are more work, and more code.

Mocking : Bad Idea

It is slow and stateful.

They end up making you test implementation thus create hell when refactoring.

If you are having to use a lot of mocks, that is an alarm of growing coupling.

Mocking makes us look away from the problem

Mocks are more work, and more code.

Use test doubles instead if you really need to mock.

How microservices should make you write
better software and tests.

reduced component architecture or micro services (objects with clear boundaries) so all kinds of testing basically collapse, I replace the green shell

⁃ creates options for agility

⁃ smaller need not be better, we want replaceable services not

The social impact of tests
reduced component architecture or micro services (objects with clear boundaries) so all kinds of testing basically collapse, I replace the green shell

⁃ creates options for agility

⁃ smaller need not be better, we want replaceable services not

Takeaways
reduced component architecture or micro services (objects with clear boundaries) so all kinds of testing basically collapse, I replace the green shell

⁃ creates options for agility

⁃ smaller need not be better, we want replaceable services not

“kill as much code as you can”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“don't use mocks”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“don't use mocks”

“you really don’t need such a large test suite”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“don't use mocks”

“you really don’t need such a large test suite”

“test your public interface, that gives you more confidence, this is what the business care about”

“kill as much code as you can”

“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“don't use mocks”

“you really don’t need such a large test suite”

“test your public interface, that gives you more confidence, this is what the business care about”

“choose tools that give you faster feedback”

Rahul C
github.com/bitsapien

twitter.com/bitsapien_logs

blog.bitsapien.dev/now

Dan North : Software that fits in your head - https://www.youtube.com/watch?v=4Y0tOi7QWqM

Ian Cooper: TDD, Where did it all go wrong - https://www.youtube.com/watch?v=EZ05e7EMOLM

DHH: TDD is Dead, Long Live Testing - https://dhh.dk/2014/tdd-is-dead-long-live-testing.html

TW Hangouts: Is TDD Dead? - https://www.youtube.com/watch?v=z9quxZsLcfo

Hexagonal Architecture - https://fideloper.com/hexagonal-architecture

References

https://www.youtube.com/watch?v=4Y0tOi7QWqM
https://www.youtube.com/watch?v=EZ05e7EMOLM
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://www.youtube.com/watch?v=z9quxZsLcfo
https://fideloper.com/hexagonal-architecture

