Testing Matters

ANd SO does your sleep.

Rahul C

Senior Developer
ThoughtWorks:

Rahul C

| write about tech, politics and food.
blog.bitsapien.dev

N @ 2 RBd

Senior Developer
ThoughtWorks:

Why am | talking albbout testing”

Why am | talking albbout testing”

Why am | talking albbout testing”

Why am | talking albbout testing”

What should you expect”

What should you expect”

What should you expect”

What should you expect”

What should you expect”

Sleep Well At Night

Software Engineers

VWhy do we do software
development”?

But...

BusiNess Impact

Always fast. Always confident.

@
-
D

* All Hail Capita

Ihere Is always a cost.

Optimise on that cost.

Code Is the cost.

Code Is the cost.

Writing code costs.

Code Is the cost.

Writing code costs.

There is cost to waiting for code to be written - agility.

Code Is the cost.

Writing code costs.
There is cost to waiting for code to be written - agility.

Changing code costs.

Code Is the cost.

Writing code costs.
There is cost to waiting for code to be written - agility.
Changing code costs.

Understanding code costs.

VWe read code more than we write.

Clean Code

Reading Code.

Reading Code.

Purpose? Boundaries? Responsibilities?

D ocumentation

) T

O N
& ’

,.,\' . I' ’

Lo . ?"
X L
NOW.THEREIS!SOMETHING]I
e R e
"HAVENT'SEEN IN A LONGTIME!

| et’s care about our tests more.

lest coge IS also code.

| et’s look at these problems.

| arge Test Suites

arge lest Suites

A Java Backend application
A Vue Frontend Application pplicall

Language Files Lines Blanks Comments Code Complexity Language Files Lines Blanks Comments Code Complexity
Vue 25 1987 78 0 1909 62 Java 93 2705 384 10 2311 69
JavaScript 9 286 21 3 262 13 YAML 2 41 2 0 39 0
CSS 1 3 0 0 3 0 JSON 1 39 0 0 39 0
HTML 1 17 0 4 13 0 XML 1 14 0 0 14 0
. . JSON 1 50 0 0 50 0

BUSIneSS Log|C Sass 1 60 10 0 50 0 Total 97 - 386 10 2403 69

Total 38 - 109 7 2287) Estimated Cost to Develop $67,824
Estimated Schedule Effort 4.946990 months

Estimated Cost to Develop $64,390 Estimated People Required 1.218040
Estimated Schedule Effort 4.850287 months
Estimated People Required 1.179433 Processed 90092 bytes, 0.090 megabytes (SI)

Processed 64032 bytes, 0.064 megabytes (SI)

Language Files Lines Blanks Comments Code Complexity Language Files Lines Blanks Comments Code Complexity
JavaScript 28 2953 370 8 2575 36 JSON 40 2117 0 0 2117 0
JSON P 79 0 0 79 0 Java 24 3406 499 27 2880 11
Total 30 3032 370 8 2654 36 Total 64 5523 499 27 4997 11
Tests

Estimated Cost to Develop $75,282 Estimated Cost to Develop $146,298

Estimated Schedule Effort 5.147031 months Estimated Schedule Effort 6.625296 months

Estimated People Required 1.299423 Estimated People Required 1.961782

Processed 95415 bytes, 0.095 megabytes (SI) Processed 196209 bytes, 0.196 megabytes (SI)

Refactoring ‘&

Refactoring &

Refactoring is changing implementation details without breaking our tests / interfaces.

Refactoring &

What if it breaks existing functionality !

Refactoring &

Don’t touch that piece of code atleast

Refactoring ‘&

The fear Is real.

Refactoring &

And it’s not because you don’t have tests.

Refactoring ‘&

Why?

The Ghost Tests

Copy Pasta

Poor test suites will lead to poorer test suites.

Duct lape Programmer

/
-
’

Cucumber anyone ? <

| % writing tests

ldeas

The Test Pyramid : What’'s missing”

The Test Pyramid : What’'s missing”

Confidence

The contract with the world Is important.

“When we write a test, we imagine the perfect
interface for our operation. We are telling
ourselves a story about how the operation will
look from the outside. Our story won't always
come true, but it's better to start from the best-

possible application program interface (API) and
work backward than to make things complicateq,
ugly, and “realistic” from the get-go.”

Behaviour IS what the business cares anout.

f E2E tests gave you faster feedback??

f E2E tests gave you faster feedback??

o o
Testing Library
Simple and complete testing utilities that encourage good

testing practices

Get Started

f E2E tests gave you faster feedback??

Testing Library

Simple and complete testing utilities that encourage goo

testing practices

Get Started

Transformations and Side Effects

Transformations and Side Effects

External HTTP Calls
Databases
File System

Any kind of I/0O

Basically anything that runs beyond your isolated system

System Under Test

Hexagonal Architecture

Ports Adapters

Hexagonal Architecture

Adapters

N

GRPC

* DB

Hexagonal Architecture

Unit Tests

Domain Adapters

GRPC

* DB

Hexagonal Architecture

Unit Tests

Domain Adapters

GRPC

* DB

Hexagonal Architecture

Unit Tests

Domain

GRPC

> DB

Back to Unit lests

Unit Tests

Domain Adapters

GRPC

* DB

Back to Unit lests

Teams’ product owner:

Can we make the user login using OTPs on phones?

Back to Unit lests

Given a phone number of Alice who is a registered user
When Alice wants to login using OTP on their phone
Then give them an OTP

Teams’ product owner:

Can we make the user login using OTPs on phones?

Given a phone number of Bob who is not a registered user
When Bob wants to login using OTP on their phone
Then do not send them an OTP

Given the shared OTP
When Alice shares it with our system
Then our systems must authenticate them in.

Back to Unit lests

Unit Tests

> Twilio

OTP requesting
system

Adapters

DB

Approach

JeTest
void shouldAllowSendingSMSIfRequestedPhoneNumberIsRegistered() {
ArrayList<String> phonebook = new ArraylList< >();

phonebook.add("8899338354") ;
String requestedOTPOn = "8899338354";

Back to Unit lests

0TPSendable otpSendable = prepare0TP(requested0TPOn, phonebook);

assertThat (otpSendable.canSend) .isTrue();
assertThat (otpSendable.otp) .hasSize(8);
assertThat (otpSendable.phoneNumber) .isEqualTo(requested0TPON);

}

@Post("/api/otp-request")
@Produces (APPLICATION_JSON)
public HttpResponse
ArrayList<String> phonebook = PhoneRepository.fetch();
0TPSendable otpSendable = prepare0TP(requested0TPOn, phonebook);
if(otpSendable.canSend) {
TwilioClient.send(otpSendable.phoneNumber, otpSendable.otp);
0TPRepository.store(otpSendable);
return HttpResponse.created();
} else {
return HttpResponse.unauthorized();

s

s

(@Body String requestedOTPOn) { | Complexity is 4 Everything is cool!

Ports
>

Unit Tests

OTP requesting

system

Adapters

>

Twilio

Back to Unit lests

JeTest

void shouldAllowSendingSMSIfRequestedPhoneNumberIsRegistered() { ‘

@Post("/api/otp-request")
@Produces (APPLICATION_JSON)
public HttpResponse (@Body String requestedO0TPOn) { Complexity is 4 Everything is cool!
ArrayList<String> phonebook = PhoneRepository.fetch();
0TPSendable otpSendable = prepare0TP(requested0TPOn, phonebook);
if(otpSendable.canSend) {
TwilioClient.send(otpSendable.phoneNumber, otpSendable.otp);
0TPRepository.store(otpSendable);
return HttpResponse.created();
} else {
return HttpResponse.unauthorized();

}

Twilio

Back to Unit lests

A
BaTest
void shouldAllowSendingSMSIfRequestedPhoneNumberIsRegistered() {
ArraylList<String> phonebook = new ArraylList< >();

phonebook.add("8899338354") ;
String requestedOTPOn = "8899338354";

> Twilio

0TPSendable otpSendable = prepare0TP(requested0TPOn, phonebook);

assertThat(otpSendable.canSend) .isTrue();
assertThat (otpSendable.otp).hasSize(8);
assertThat (otpSendable.phoneNumber).isEqualTo(requested0TPON);

}

s

Back to Unit lests

JeTest

void shouldAllowSendingSMSIfRequestedPhoneNumberIsRegistered() { ‘

@Post("/api/otp-request")
@Produces (APPLICATION_JSON)
public HttpResponse (@Body String requestedO0TPOn) { Complexity is 4 Everything is cool!
ArrayList<String> phonebook = PhoneRepository.fetch();
0TPSendable otpSendable = prepare0TP(requested0TPOn, phonebook);
if(otpSendable.canSend) {
TwilioClient.send(otpSendable.phoneNumber, otpSendable.otp);
0TPRepository.store(otpSendable);
return HttpResponse.created();
} else {
return HttpResponse.unauthorized();

}

Twilio

Mocking

Mocking : Bad Idea

It Is slow and stateful.

Mocking : Bad ldea

It Is slow and stateful.

They end up making you test implementation thus create hell when refactoring.

Mocking : Bad ldea

It is slow and stateful.
They end up making you test implementation thus create hell when refactoring.
If you are having to use a lot of mocks, that is an alarm of growing complexity.

Mocking makes us look away from the problem

Mocking : Bad ldea

It is slow and stateful.
They end up making you test implementation thus create hell when refactoring.

If you are having to use a lot of mocks, that is an alarm of growing coupling.
Mocking makes us look away from the problem

Mocks are more work, and more code.

Mocking : Bad ldea

It is slow and stateful.
They end up making you test implementation thus create hell when refactoring.

If you are having to use a lot of mocks, that is an alarm of growing coupling.
Mocking makes us look away from the problem

Mocks are more work, and more code.

Use test doubles instead if you really need to mock.

How microservices should make you write
better software and tests.

Reptaceabte (..omPov\e.h&
Architecture

sustai v\abl.v

The social impact of tests

Takeaways

“kill as much code as you can’

“kill as much code as you can’

“we read code more than we write, so optimise for reading” true for tests

“kill as much code as you can’
“we read code more than we write, so optimise for reading” true for tests

“test behaviour and never the implementation”

“kill as much code as you can”
“we read code more than we write, so optimise for reading” true for tests
“test behaviour and never the implementation”

“tests will help you remove coupling, don’t look away by mocking away everything”

“kill as much code as you can’
“we read code more than we write, so optimise for reading” true for tests
“test behaviour and never the implementation”
“tests will help you remove coupling, don’t look away by mocking away everything”

“don't use mocks”

“kill as much code as you can”
“we read code more than we write, so optimise for reading” true for tests
“test behaviour and never the implementation”
“tests will help you remove coupling, don’t look away by mocking away everything”
“‘don't use mocks”

“you really don’t need such a large test suite”

“kill as much code as you can’
“we read code more than we write, so optimise for reading” true for tests
“test behaviour and never the implementation”
“tests will help you remove coupling, don’t look away by mocking away everything”
“don't use mocks”
“you really don’t need such a large test suite”

“test your public interface, that gives you more confidence, this is what the business care about”

“kill as much code as you can’
“we read code more than we write, so optimise for reading” true for tests
“test behaviour and never the implementation”
“tests will help you remove coupling, don’t look away by mocking away everything”
“don't use mocks”
“you really don’t need such a large test suite”
“test your public interface, that gives you more confidence, this is what the business care about”

“choose tools that give you faster feedback”™

Rahul C

bitsapien

L

@% blog.bitsapien.dev/now

References

Dan North : Software that fits in your head - https://www.youtube.com/watch?v=4Y0tOi/QWgM
lan Cooper: TDD, Where did it all go wrong - https://www.youtube.com/watch?v=EZ05e/EMOLM

DHH: TDD is Dead, Long Live Testing - https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
TW Hangouts: Is TDD Dead? - https://www.youtube.com/watch?v=z9quxZsl cfo
Hexagonal Architecture - https://fideloper.com/hexagonal-architecture

https://www.youtube.com/watch?v=4Y0tOi7QWqM
https://www.youtube.com/watch?v=EZ05e7EMOLM
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://www.youtube.com/watch?v=z9quxZsLcfo
https://fideloper.com/hexagonal-architecture

