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Files > 500 LOC

Tests that mocked so much, they were just testing mocks

Can’t make no correlation between a business feature and a test
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Sleep Well At Night

Ways to make your tests suite more readable

Spend less time ripping your head when writing or reading tests

Spend less time refactoring

Test with more confidence



Software Engineers



Why do we do software 
development?



I ❤ code.



But…



Business Impact



Always fast. Always confident.



All Hail Capitalism 💰



There is always a cost.



Optimise on that cost.
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Code is the cost.

Writing code costs. 

There is cost to waiting for code to be written - agility. 

Changing code costs.


Understanding code costs.



We read code more than we write.



Clean Code



Reading Code.



Reading Code.
Purpose? Boundaries? Responsibilities?



Documentation



 Documentation



Let’s care about our tests more.



Test code is also code.





Let’s look at these problems.



Large Test Suites



Large Test Suites

A Vue Frontend Application
A Java Backend application

Business Logic

Tests



Refactoring 🤯



Refactoring 🤯

Refactoring is changing implementation details without breaking our tests / interfaces.



Refactoring 🤯

What if it breaks existing functionality !



Refactoring 🤯

Don’t touch that piece of code atleast



Refactoring 🤯

The fear is real.



Refactoring 🤯

And it’s not because you don’t have tests.



Refactoring 🤯

Why?



The Ghost Tests



Copy Pasta



Poor test suites will lead to poorer test suites.



Duct Tape Programmer



Cucumber anyone ? 🥒



I ❤ writing tests



Ideas
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Confidence



The contract with the world is important.
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Confidence



Behaviour is what the business cares about.
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Transformations and Side Effects



Transformations and Side Effects

External HTTP Calls

Databases

File System


…


Any kind of I/O 
….

 

Basically anything that runs beyond your isolated system



System Under Test
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Back to Unit Tests

Teams’ product owner:  

Can we make the user login using OTPs on phones?


Given a phone number of Alice who is a registered user

When Alice wants to login using OTP on their phone

Then give them an OTP


Given a phone number of Bob who is not a registered user

When Bob wants to login using OTP on their phone

Then do not send them an OTP


Given the shared OTP

When Alice shares it with our system

Then our systems must authenticate them in.



Back to Unit Tests

OTP requesting 
system

Ports
AdaptersHTTP

Twilio
Unit Tests

Phonebook

DB



Approach
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Mocking : Bad Idea

It is slow and stateful.


They end up making you test implementation thus create hell when refactoring.


If you are having to use a lot of mocks, that is an alarm of growing coupling.

Mocking makes us look away from the problem


Mocks are more work, and more code.


Use test doubles instead if you really need to mock.



How microservices should make you write 
better software and tests. 

reduced component architecture or micro services (objects with clear boundaries ) so all kinds of testing basically collapse, I replace the green shell 

⁃ creates options for agility 

⁃ smaller need not be better, we want replaceable services not 
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Takeaways 
reduced component architecture or micro services (objects with clear boundaries ) so all kinds of testing basically collapse, I replace the green shell 

⁃ creates options for agility 

⁃ smaller need not be better, we want replaceable services not 
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“kill as much code as you can” 

“we read code more than we write, so optimise for reading” true for tests 

“test behaviour and never the implementation” 

“tests will help you remove coupling, don’t look away by mocking away everything” 

“don't use mocks” 

“you really don’t need such a large test suite” 

“test your public interface, that gives you more confidence, this is what the business care about” 

“choose tools that give you faster feedback” 



Rahul C
github.com/bitsapien

twitter.com/bitsapien_logs 

blog.bitsapien.dev/now



Dan North : Software that fits in your head - https://www.youtube.com/watch?v=4Y0tOi7QWqM

Ian Cooper: TDD, Where did it all go wrong - https://www.youtube.com/watch?v=EZ05e7EMOLM

DHH: TDD is Dead, Long Live Testing - https://dhh.dk/2014/tdd-is-dead-long-live-testing.html

TW Hangouts: Is TDD Dead? - https://www.youtube.com/watch?v=z9quxZsLcfo

Hexagonal Architecture - https://fideloper.com/hexagonal-architecture

References

https://www.youtube.com/watch?v=4Y0tOi7QWqM
https://www.youtube.com/watch?v=EZ05e7EMOLM
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://www.youtube.com/watch?v=z9quxZsLcfo
https://fideloper.com/hexagonal-architecture

